نتایج جستجو برای: Laplacian energy

تعداد نتایج: 678183  

Journal: :transactions on combinatorics 2013
qingqiong cai xueliang li jiangli song

for a simple digraph $g$ of order $n$ with vertex set${v_1,v_2,ldots, v_n}$, let $d_i^+$ and $d_i^-$ denote theout-degree and in-degree of a vertex $v_i$ in $g$, respectively. let$d^+(g)=diag(d_1^+,d_2^+,ldots,d_n^+)$ and$d^-(g)=diag(d_1^-,d_2^-,ldots,d_n^-)$. in this paper we introduce$widetilde{sl}(g)=widetilde{d}(g)-s(g)$ to be a new kind of skewlaplacian matrix of $g$, where $widetilde{d}(g...

Journal: :transactions on combinatorics 2015
shariefuddin pirzada hilal a. ganie

for a simple connected graph $g$ with $n$-vertices having laplacian eigenvalues‎ ‎$mu_1$‎, ‎$mu_2$‎, ‎$dots$‎, ‎$mu_{n-1}$‎, ‎$mu_n=0$‎, ‎and signless laplacian eigenvalues $q_1‎, ‎q_2,dots‎, ‎q_n$‎, ‎the laplacian-energy-like invariant($lel$) and the incidence energy ($ie$) of a graph $g$ are respectively defined as $lel(g)=sum_{i=1}^{n-1}sqrt{mu_i}$ and $ie(g)=sum_{i=1}^{n}sqrt{q_i}$‎. ‎in th...

Journal: :iranian journal of mathematical chemistry 2014
f fayazi s rahimi sharbaf

a concept related to the spectrum of a graph is that of energy. the energy e(g) of a graph g is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of g . the laplacian energy of a graph g is equal to the sum of distances of the laplacian eigenvalues of g and the average degree d(g) of g. in this paper we introduce the concept of laplacian energy of fuzzy graphs. ...

A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...

The energy of a graph G is equal to the sum of absolute values of the eigenvalues of the adjacency matrix of G, whereas the Laplacian energy of a graph G is equal to the sum of the absolute value of the difference between the eigenvalues of the Laplacian matrix of G and the average degree of the vertices of G. Motivated by the work from Sharafdini an...

A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...

‎Let $G$ be a graph without an isolated vertex‎, ‎the normalized Laplacian matrix $tilde{mathcal{L}}(G)$‎ ‎is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$‎, where ‎$mathcal{D}$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎G‎$‎‎. ‎The eigenvalues of‎ $tilde{mathcal{L}}(G)$ are ‎called as ‎the ‎normalized Laplacian eigenva...

Journal: :journal of linear and topological algebra (jlta) 0
m ghorbani department of mathematics, faculty of science, shahid rajaee teacher training university m hakimi-nezhaad department of math., faculty of science, shahid rajaee teacher training university

‎let $g$ be a graph without an isolated vertex‎, ‎the normalized laplacian matrix $tilde{mathcal{l}}(g)$‎‎is defined as $tilde{mathcal{l}}(g)=mathcal{d}^{-frac{1}{2}}mathcal{l}(g) mathcal{d}^{-frac{1}{2}}$‎, where ‎$‎mathcal{‎d}‎$ ‎is a‎ diagonal matrix whose entries are degree of ‎vertices ‎‎of ‎$‎g‎$‎‎. ‎the eigenvalues of‎‎$tilde{mathcal{l}}(g)$ are ‎called ‎ ‎ as ‎the ‎normalized laplacian ...

We introduce the Laplacian sum-eccentricity matrix LS_e} of a graph G, and its Laplacian sum-eccentricity energy LS_eE=sum_{i=1}^n |eta_i|, where eta_i=zeta_i-frac{2m}{n} and where zeta_1,zeta_2,ldots,zeta_n are the eigenvalues of LS_e}. Upper bounds for LS_eE are obtained. A graph is said to be twinenergetic if sum_{i=1}^n |eta_i|=sum_{i=1}^n |zeta_i|. Conditions ...

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید